Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
debakarr
GitHub Repository: debakarr/machinelearning
Path: blob/master/Part 2 - Regression/Random Forest Regression/[R] Random Forest Regression.ipynb
1009 views
Kernel: R

Random Forest Regression

Data Processing

# Importing the dataset dataset = read.csv('Position_Salaries.csv') dataset = dataset[2:3]

Fitting the Random Forest Regression Model to the dataset

# install.package('randomForest') library(randomForest) set.seed(42) regressor = randomForest(x = dataset[1], y = dataset$Salary, ntree = 110) # dataset[] gives a dataframe while dataset$DependentVariable will give us a vector

Visualising the Random Forest Regression Model results (for higher resolution and smoother curve)

# install.packages('ggplot2') library(ggplot2) x_grid = seq(min(dataset$Level), max(dataset$Level), 0.01) ggplot() + geom_point(aes(x = dataset$Level, y = dataset$Salary), colour = 'red') + geom_line(aes(x = x_grid, y = predict(regressor, newdata = data.frame(Level = x_grid))), colour = 'blue') + ggtitle('Truth or Bluff (Random Forest Regression Model)') + xlab('Level') + ylab('Salary')
MIME type unknown not supported
Image in a Jupyter notebook

Predicting a new result

y_pred = predict(regressor, data.frame(Level = 6.5)) y_pred

Here the predicted value is almost equal to 160K which is the Salary value prposed by the employee. Also the model seems to be much better then the Polynomial Regression Model.